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Page 3: Equations (3a) and (3b) should be

A=A+ 6B
B= A+ nyB

Page 4: Equation (5a), the 4th column of the matriz should be

0
ko
—k,
~kyv + k2

Page 4: Equation (5b) should be

ky = & [ke, k2 = & [ke

Page 6: The right hand sides of equations (8e) and (8f) should be the individual
variables divided by the corresponding Jacobians.

Pages 17-18: All the numerical results were obtained using the correct formulae.
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iy H.C. Yeet and P. Kutlerf
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LT Abstract. A one-parameter family of explicit and implicit second-order- ,
accurate, entropy satisfying, total variation diminishing (TVD) schemes
has been developed by Harten. These TVD schemes have the property of
not generating spurious oscillations for one-dimensional nonlinear scalar
hyperbolic conservation laws and constant coefficient hyperbolic systems.
Application of these methods to one- and two-dimensional fluid fiows con-
taining shocks (in Cartesian coordinates) yields highly accurate nonoscil-
latory numerical solutions. The goal of this work is to extend these methods
to the multidimensional Euler equations in generalized coordinate systems.
Some numerical results of shock waves impinging on cylindrical bodies are
compared with MacCormack's method.

§1. Motivation and Objective

ET

Several techniques for the construction of nonlinear, second-order- ff i
accurate, high-resolution, entropy satisfying schemes for hyperbolic conser- ;
vation laws have been developed in recent years. See, for example, van Leer

. e : °
¢ . .
. e e < C
},/A}“‘;:if;;f o N e b Lo s et ot i s B gt R e
ik ST T -3

<

g
~ofon
Rt

4

L [1], Colella and Woodward [2], Harten [3,4], Roe [5] and Osher [6]. We can

L‘ also view these schemes as shock-capturing algorithms based on either an
et exact or approximate Riemann solver. From the standpoint of numerical ;
“f analysis, these schemes are TVD for one-dimensional nonlinear scalar hyper- f
o bolic conservation laws and for one-dimensional constant coefficient hyper- f
iy boiic systems. In [4], Harten introduced the notion of TVD schemes. Entropy ;
; :

satisfying TVD schemes have the property that they do not generate spurious
oscillations and that the weak solutions are physical ones. The goal of con-
structing these highly nonlinear schemes is to simulate complex flow flelds
more accurately (i.e., to comstruct schemes that are stable in a strong hon-
linear sense). TVD schemes are usually rather complicated to use compared
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with the conventional shock-capturing methods such as varlants of the Lax-
Wendroff scheme. The complexity of these schemes has inhibited their ap-
plication to complicated flow geometries in the past.

Application of Harten's explicit and implicit methods to standard one-
and two-dimensional transient and steady-state gas-dynamwic test problems
in Cartesian cootdinates was examined by Harten [3] and Yee et al. [7-9).
In both one and two dimensions, accurate solutions containing shocks and
contact discontinuities were obtained.

The objective of this report is to extend Harten's TVD method to general-
ized coordinate systems, and to test the method on a two-dimensional
problem of a moving shock wave impinging on a cylinder. The numerical
results are compared with MacCormack's explicit method. From here on, we
refer to this method as the TVD scheme.

A description of the TVD algorithms in Cartesian coordinates can be found
in reference [9]. A description of this method for two-dimensional Euler
equations in generalized coordinate systems will be discussed in the next
section. Some results on the shock wave-cylinder interaction are presented in
section 3. '

§2. Extension of an Explicit TVD Scheme for the Euler Equations in
Generalized Coordinate Systems

Here we assume the reader is either familar with the development and
properties of explicit and implicit TVD schemes, or will consult the ap-
propriate references [3,4,7-9]. A brief description of these methods and a
detailed implementation of these methods for one- and two-dimensional Euler
equations of gas dynamics can be found in reference [9]. To avoid extra
notation, a particular form of the explicit TVD scheme in [3] is extended
to generalized coordinates. Generalization of the implicit TVD scheme to
arbitrary geometries follows the same procedure.

§2.1 The Euler Equations

In two spatial dimensions, the Euler equations of gas dynamics can be
written in the conservative form as

e e — o ————— e ————
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where
p m n
m m?/p+p nu
Q= nl F= mv y G= n2/p+p (lb)
e (e +p)m/p (e+p)n/p

with m = pu and n = pv. The primitive variables are the density p, the
velocity components « and v, and the pressure p. The total energy per unit
volume ¢, is related to p by the equation of state for a perfect gas

p=(y— 1)[e— ‘1‘2{;—@] (10)

where 4 is the ratio of specific heats.

A generalized coordinate transformation of the form € =§¢(z,y) and n =
7(z,y) which maintains the strong conservation law form of equation (1) is
given by

0Q | F(Q) . 8G(Q) _
5t T et ppt =0 2)

WhereQ = Q/J, F = (sz+€yG)/J: G = (n:F 4+ nyG)/J, and J =

Exny — Eynz, the Jacobian of transformation. Let A= 0F/8Q and B
8G/9Q; then the Jacobian A and B of /” and & can be written as

A=(&,A+¢,B)YI (32)
B = (n,A+n,B)/J ‘ (3b)

Let ¢ be the local speed of sound; the eigenvalues of A are
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(a,0%,08,08) = (U — kee, U, U+ kee, U) (4a)
where U = (&;u + £,v) and ke = ‘/gg + £€2. The eigenvalues of 3 are
(ag,05,05,a8) = v — kyc, vV, V+ kyc, 1}) (4b)

where V = (n,u + nyv) and ky = V nz + 73

Furthermore, let R = (R}, R%,RY, RY) and R, = (R, R2,R3, R}) be
the matrices whose columns are eigenvectors of A and B. Let R—1 and R,!
be the inverses of R, and R,,. A form of R¢ and Rg™! can be wntten as

1 1 1 0
Re = U— klc U u+k1c —ks
€= v — kac v v+ koc k1
H — kyuc -- kave (42 + v2)/2 H + kyuc + kove kv — kzi(t )
ba
where
ki=&, ka=¢ (5b)
c2 'll2 + '02
He o2 (5)
and
#(b1 + krufc + kavfe)  3(—bou — k1 /c) B—bov — kafc) bbs
R_i 1-— b1 bzu bz‘v —bz
© M — hiwfo— kavfe) R(—bou+kifc) A(—byy +kafc) Bbe
— kot + kv ko —ky 0
(6a)
with
4
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by = b Y ':” ) (6b)
bz = ;; ! (6‘3)

Let the grid spacing be denoted by A¢ and A7 such that § = Jjag and
n = kAn. Denote Q,.H /2,k s some symmetnc average of Q, k and Q,.H k
(for example, the Roe's average [10]). Let al, /2 Rigi/2, R J+1 /2 denote

the quantltlc" of a}, Re, Re"l related to A evaluated at, Qj+1/2,%- Similarly,
let a,,_*_l /20 Br41/2, Rk+1 /2 denote the quantnties of a,,, Ry, Ry —1 related to
B evaluated at Q; x+1/2.

We define

Qj41/2 = R;'431/2(éj+ 16— Qjk) (Ta)

as the component of (Q,.,. 1,k — Q, &) (omitting the k index) in the locally
I-th characteristic £-direction [9]. Denote

Qk41)2 = Rﬁq/z(éf.kﬂ — Q) (7b)

as the component of (Q, k1 — Q_., x) (omitting the s index) in the locally
[-th characteristic #-direction. The vector a of equation (7a) can be written

()4 1/2] (aa — bb)/2
aFr1se| _ |Ajt /2P — aa 8
3 = (8a)
OF41/2 (aa + bb)/2
93+ 1/2) ce
where
5
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172+ Viga2
g = '7 [Aa+x/ee + T 5 28 Avtipep
+ /2
= Uj4-1/28541/2m — vj+n/2Aa'+x/2n] (8b)
bb 1 [IcA m— (kju + kovj41/0)A P
—— . — . 2 . .
Cit1/2 18;5+1/2 1U54-1/ 2Vj+1/2)R541/2
+ szj+1/2n} . (80)
cc = —k18j41/2n — (k2tjt1/2 — k1vi41/2)A 41720 + kol jg1/2m (84) ?
il
with i
Ajt1/20 = Pj41,k — Piks  Djprfem=mjp1x— mix  (8e)
and ,
|
Bjt1fah = Njp1k— N Ajprpe=cipip—ejx (8 |

i

The simplest form for Q4 /2.k is

Qjt1/2,k = (Qj41,k + Qj.1)/2 (9)

Roe's form of the averaging in the é-direction is:
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0,
u,~+,/=,,=""“fgi’; i | (108
Ujt1/ak = E”f*'ﬁ"f: 1k (10b)
= Hjy1/06 = DH, %;—T B (10c)
: ipryon =(1— 1)[Hj+1/2,k - %(“§+1/2,k + v 1/2) (10d)
D= \[pis14/0ik (10¢)
H= e 4507 +07) (101

Therefore to use Roe’s averaging for the ¢-differencing, all one has to do is
compute u;41/2,k, Vj+1/2.k, 304 4172,k in equations (4a), (5)-(6), (7a) and
(8) by equation (10). Similarly, Roe's averaging can be obtained for u; x41/2,
Vj,k4-1/2, 80d ¢j,54-1/2. In the numerical experiments for the two-dimensional
test problem, Roe’s averaging is used.
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§2.2 Algorithm of a TVD Method in Generalized Coordinates
Let h = At be the time step; then a particular form of the explicit TVD

method of (3] in generalized coordinates, wbeu implemented by the method
of fractional steps, can be written as follows

Qn+2 L /2LthLth/2QJ" (113)
where
[ ] " a .
Qi.k = QJ. Af( +l/2. ;—1/2 x) = LQQ;k (11b)
an41 .® At -
Q;..:- = Qjux — ( Jk41/2 = ),k—1/2) = qQ,, (11¢)
Here

F ;'.+l/2.k = %[ﬁ‘ (Qjr)+ F (Q,H-l.k)]

A 4
=1

. (11d)
an

é;'.k+1/a = %[6'(@,-,,‘) + @(Qj.k-a-:)J

A 4
+ 2At2['ck+l/2(9k + gk-l-l) - ¢(Vk+1/2 + 7k+l/2)ak+1/2]Rk+1/2

(11e)

with
Kit1/e = [1+ o' max(6!, 6}, ,))/8 (111)
o< loy 172 — oty ol (11g)

laj+1/2l + la,-x/zl
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0<u <2 (11h)

0Wigrs2+ Viprs2) = Whprjo+ gy o) +1/4 (11j)
At
";'-l-x/z = Z_éa;'-*"/z (11k)

and

= ~
L =l (9j+1 - gj)/a;‘+l/2 a,‘i+l/2 #0 (111)
Vi+1/2 = Mjt1y2 0 0‘;‘+1/2 =0.

We can define the variables of equation (1le) by simply replacing the
subscripts j and j+-1/2 in equations (11f)-(111) by & and k 4+ 1/2. Extension
of the implicit TVD scheme [4,9] to a generalized coordinate system follows
the same procedure as described above.

In general, if one handles the intermediate boundary conditions correctly,
one only needs to do the half steps in (11a) at the beginning and immediately
before printout; i.e.,

2 20
Qi = Lh2heh (heh2g) (12)

4 0 . e e, sa
where @, ; is the initial condition.

§3. Numerical Result for the Shoeck Wave-Cylinder Interaction

A good test problem for assessing the capabilities of any shock-capturing
scheme is the shock-diffraction problem; i.¢., the computation of the unsteady
flow fleld resulting from a planar moving shock wave striking an obstacle. In
the present numerical experiment the diffraction process is determined over

= A e ————— gy -




8 cylinder, The shock patterrs at two instances in time ¢ 1 and {y after initial
impingement are sketclied in Fig. 1.

When the incident shock first collides with the cylinder, regular reflection
occurs at the shock impingement point. As the impingement point of the
incident shock propagates around the body, the reflection process makes a
transition from regular to Mach reflection. It -%ould bo pointed out that
during the transition process, complex and double Mach reflection shock
structures are possible. Their occurrence is dependent on the initial strength
of the incident shock wave. For single Mach reflection, a triple point forms

and the incident shock no longer touches the body. Emanating from the triple
point are three waves: 1) a Mach stem which strikes the body perpendicularly,
2) a slip surface or shear layer which strikes the body and results in a
vortical singularity (nodal point of streamlines), and 3) the reflected shock
which propagates away from the body. In.addition to the abuve flov field
characteristics, a stagnation point (saddle point of streamlines) exist: st the
plane of symmetry, both forward and aft on the body.

The shock-diffraction problem contains most of the fl: ¢+ j.scon.i.:. iiies pos-
sible with the Euler equations and is thus 2 £nud vest “or a numerical shock-
capturing procedure. Both MacCormack’s ¢ piicit method and the explicit
TVD scheme were applied to the shock wave-cylinder interaction problem.

For a fair comparision, the TVD scheme was implemented in an existing com-
puter code [11] which also contained MacCormack’s method, so that same
initial conditions, buundary conditions and coordinate transformation were

used. A cylindrical grid consisting of 50 points around the half-cylindrical
(&-direction) body and 51 points between the body and outer boundary (-
direction) was msed. The body tadius is one and the distance from the body
to the outer boundary is between 2 to 4 (depending on the incident shock
Mach number). Rays from the coordinate system origin are spaced at equal
angles with points uniformly placed in the radial direciion between the body
and the outer boundary (see Fig. 2).

§3.1 Initial and Boundary Couditions

Fig. 2 shows a schematic representation of the grid with its boundaries
and initiz! conditions. The nodal points to the right of the planar moving
shock are initialized to free stream values while those to the left are set equal
to the post moving shock conditions. In the outer boundary, it is necessary
to track the moving planar shock as a function of time along this boundary

10
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surface.

At the planes of symmetry, the reflection principle is used; i.e., the pressure,
diuil, nud u-velocity component are treated as even functions across the
plane of symmeiry while the v-velocity component is treated as an odd
function. The boundary condition at the surface of the cylinder must satisfy
the tangency condition which requires that the velocity in the radial-direction
be equal to zero at the body. Furthermore, for convenience, an image line of
nodal points is considered which falls one mesh interval inside the body, so :
that. the reflection principle can be applied.

§3.2 Numerical Result

MacCormack's method with a fourth-order dissipation term was run at
a Courant (CFL) number of 0.6 for stability while the TVD method was
operated at a Courant number of 0.9 for efficiency. The Courant number

is a measure of the maximum permissible time step for a stable solution.
The TVD method is insensitive to Courant number between 0.5 and 1. Both
methods were run to approximately the same total time (100 steps for the

MacCormack’s method, 70 steps for the TVD method). The results in the .
form of pressure and density contour plots are shown in Fig. 3 at a time for ; i

which Mach reflection of the incident shock exists. The incident shock Mach : |
number was 2. The results from MacCormack’s method are shown in Figs. A
3a and 3b. Those for the TVD method are shown in Figs. 3¢ and 3d. It
can be seen that the TVD scheme results in a better defined flow fleld; i.e.,
“crisper” shocks and hardly any associated spurious oscillations. The slip
surface which emanates from the triple point is smeared beyond recognition

by both methods. It is, however, possible to observe the location on the body
where the slip surface impinges (i.e., the vortical singularity). At this point, a
local pressure minimum occuts, and the pressure contours, as a result, encircle
it. This behavior can be observed in the pressure contour plot in the region

to the left of the Mach stem at the body for the TVD scheme.

To test the shock-capturing capability of the TVD method at higher inci-
dent shock Mach numbers using the same grid size as before, cases were run
at Mach numbers between 3 and 10. Figure 4 shows the pressure and density
contour plots for the TVD scheme with an incident shock Mach number of
10 at a time when the incident shock was already passed the cylinder. For
this case the Mach stem that extended from the triple point to the body
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has struck the plane of symmetry an reflected from it. This will eventually
make a transition to a Mach reflection just as it did at the body. The result
shows that the TVD scheme is very stable and produces high resolution shock
waves. The MacCormack method, on the other hand, was unstable under the
same flow condition.

The TVD scheme requires approximately twice the CPU time per time
step as MacCormack's method but results in enhanced numerical stability
and solution accuracy.

§4 Concluding Remarks

The nonlinear, second-order accurate explicit TVD scheme in generalized
coordinate systems has been applied to obtain transient solutions on the two-
dimensional problem of a moving shock wave impinging on a cylinder. Fairly
accurate solutions were obtained. Moreover, from numerical experiments,
the scheme is stable in a strong nonlinear sense (e.g., the calculation with an
incident shock Mach number of 10). The report is the first attempt to apply
the TVD scheme to non-cartesian coordinates. It is preliminary in nature.

Further research is underway on improving the resolution of discontinuities by
the artificial compression method [12,13], and on improving the efficiency of

coinputation by possibly using a large-time step (explicit method) approach
[14].
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